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TEMPERATURE DISTRIBUTION IN COOLED TURBINE DISKS

A. BROWNt and E. MARKLAND}

(Received 19 August 1963 and in revised form 17 October 1963)

Abstract—The axisymmetric distribution of temperature is calculated for disks in which the thickness
varies exponentially with radius, neglecting temperature variation through the thickness. An analytical
solution is found for the case of disks of uniform thermal conductivity, constant heat-transfer co-
efficient and negligible coolant temperature rise. When the conductivity varies with temperature, or the
heat-transfer coefficient varies with radius, or the temperature rise of the coolant is appreciable, a
numerical solution is adopted. A few computed results are presented, showing that relatively small
flows of coolant produce eflective cooling, and that variation of thermal conductivity with temperature
is significant for some materials in current use.
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NOMENCLATURE

thickness of disk at radius r;

meridional length measured outwards along surface of disk;
heat-transfer coefficient between disk surface and coolant;
thermal conductivity of disk material at temperature T
arbitrary radius;

specific heat of coolant;

mass flow rate of coolant over each side of disk;
temperature of disk at radius r;

temperature of coolant at radius r;

dimensionless radius;

dimensionless disk temperature;

dimensionless coolant temperature;

a parameter specifying the radial proportions of the disk:
a parameter specifying the disk thickness;

a parameter determined by heat-transfer coefficient and con-
ductivity;

a parameter determined by temperature coefficient of con-
ductivity;

a coolant mass flow parameter;

vth order modified Bessel functions of first and second
kinds:

subscripts 0 and 1 refer to inner and outer radii of the disk.
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INTRODUCTION

A Gas turbine disk, in which the thickness
usually varies with radius, receives heat from
the blades at its rim and may be cooled by forced
convection of air, admitted at the hub, flowing
outwards over the surfaces of the disk. The heat
removed from the disk and the temperature
distribution in it are important in determining
the blade temperature and thermal stresses in
the disk.

There appears to be surprisingly little pub-
lished on temperature distributions in such disks.
Johnson [1] suggests that the difference between
temperature at any radius of a thin disk and that
at the hub is proportional to the 4th power of
radius, but the grounds for this statement are
not known. Bert [2] has given brief details of a
non-symmetric solution for a disk of constant
thermal conductivities in the radial and tan-
gential directions, over which the heat-transfer
coefficient is an exponential function of radius.
In the present work we deal with axisymmetric
temperature distributions; an analytical solution
is found for the case of thin disks of uniform
thermal conductivity, constant heat-transfer
coefficient, and negligible coolant temperature
rise. In practical cases where these conditions
are not met, numerical solutions may be found.
Runge-Kutta’s method proves useful in this
instance because of its accuracy, adaptability
and availability of a suitable subroutine in many
digital computers.

ANALYTICAL SOLUTION OF THE HEAT FLOW
EQUATIONS
Consider the disk of Fig. | in which the thick-
ness b at any radius r between inner and outer
radii r, and r, satisfies the relationship

b == bgr“ (l)

where b; and n are constants. Heat is supplied
uniformly to the disk at its periphery, where its
temperature is 7y, and is removed by forced
convection of a coolant, of specific heat ¢.
This is introduced at a known temperature T at
the inner radius and flows outwards over both
surfaces of the disk. The mass flow rate is M
over each side of the disk. It is assumed that the
disk is sufficiently thin for temperature variation
in the direction of the axis to be negligible and
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Axis of
symmetry

Fia. I. Diagram showing notation.

that there is no radial heat flux at the inner
radius, i.e.

)

The heat-transfer coefficient / from the disk to
the coolant is assumed to be constant through-
out so the local steady-state temperature of the
coolant T, at radius r is related to the local disk
temperature T by the expression

2m hr

Te
d = (T‘ T}

o e (3)

in which f denotes meridional length measured
outwards along the curved surface of the disk.
If the thermal conductivity k of the disk, which
may vary with temperature, is treated for con-
venience as a function of r, then the steady-state
heat conduction equation for the disk is

d*T ldkll ‘ Id/_))dT

drz ¥ (k dr " r b drl dr
2h df .
T Ta 0 @

We restrict the analytical solution to conditions
in which M is large, and the thermal conductivity
is independent of temperature, so that

To - Tw (5)

and

k E '":/\',s' (6)
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throughout, and, since the disk is comparatively
thin,

df
= i N

Equation (4) then becomes

2T n+41dT  2h ,
a2 T T G s T T Tl =08
when & is written in terms of r from (1).

It is convenient to work in terms of dimension-
less temperature ¢ and dimensionless radius s
defined by

‘/S = (T - Too)/(r1 - T('ﬁ) (9)
and
s = (r —r/{ry — ro) (10)
so that (8) becomes
d% n+1dé o
dt T Ay & CUATITS=0 (D

in which 4 and C are constants specified by the
geometrical and thermal properties of the disk
and by the heat-transfer coefficient, viz:

A = rof(ry — ro) (12)
C = 2h(ry — roP*"/kbs. (13)

The solution of (11), obtained by Lommel’s
transformation [3], is

¢ =4+ 9" cl)z)+ dK, (2] (14)
where
v == pf(n — 2) (15)
and
p— 2 Cl"” 1 [y
T=y (A4 - s, (16)

Noting that

dé ;
s C¥A 49"k, (2) —dK, (21 O

¢ and d are found from the conditions ¢, = |
and (dé/ds), -= 0 to be
A+ 2K, (z4)
(‘::;.—;,_,,, . . ~
1,(z) K, 1 (z9) + 1,1 (20) K (21) (18)
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and
I, (zp)
d =222 19
K, (zo) (19)
Typical results for the case of n = 0 (flat plate
disk) and n = — 1 (hyperbolic disk) are shown

for a few values of 4 and C in Fig. 2, from which
we see that the overall temperature distribution
is comparatively insensitive to disk shape. The
difference between the curves at the hub for the
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Fic. 2. Temperature distributions in disks of constant
thermal conductivity with constant coolant temperature.
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disk of tip/hub radius ratio of 9 (4 = 0-125)
could be significant in applications where there
is a limitation on hub temperature; the larger
value of ¢ at the hub of a hyperbolic disk per-
sists under conditions of reduced mass flow.

NUMERICAL SOLUTION OF THE HEAT FLOW
EQUATIONS

In many practical cases the supply of coolant
is restricted to such a degree that it experiences
a considerable temperature rise as it passes over
the surface of the disk. Moreover, the tempera-
ture range from the rim to the hub of the disk
may be sufficiently wide for there to be appreci-
able changes in thermal conductivity of the disk
material. A numerical solution of the coolant
and disk temperature, equations (3) and (4), is
adopted in these circumstances ; since it is possible
to allow for the difference between meridional
length f measured along the curved surface of the
disk and corresponding radial dimension r, this
effect is also included. The heat-transfer co-
efficient # may now be regarded as an arbitrary
function of radius. The restrictions of (5), (6)
and (7) no longer apply.

Suppose that the thermal conductivity k of
the disk material at temperature T is given by

k =ks (1 +puT) (20)

in which ks is the conductivity at a reference
temperature here taken as zero and p is the
temperature coefficient. (3) and (4) may con-
veniently be written in terms of dimensionless
temperatures & and ¢ and dimensionless radius
s in the form

G EU90 B G0
an
ana
&g D (dg\r n1dd
e ioeld) Ths e
6=0=0 @2
in which
0 - Te — 7}-0 (23)

T, —Te
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and ¢ and s are defined in (9) and (10). The
constants appearing in (21) and (22) are speci-
fied by the properties of the disk and coolant, and
by the heat-transfer coefficient, viz:

A == rol(ry - 1g) (24)
B =1}bn(r, — rg)n-t (25)
C = 2h(ry — ro)* *ksbs (1 + uTeo) (26)
D = pu (Ty — Tep)/(1 + uT o) (27)
E=2nh(r, —ro?Mcp. (28)

(21) and (22) may be integrated numerically
from s = 0 to s .= | by a step-by-step method
such as Runge-Kutta’s. The known boundary
conditions are

¢p=0=0 at s=0 (29)

and

b=1 at s=1 (30)

so the solution is started with an estimated value
of ¢ at s = 0. The integration is made to s = |
where the computed value of ¢ is compared with
(30). From this comparison a new starting value
of ¢ is estimated and the procedure repeated as
necessary.

Some results for typical values of the con-
trolling parameters are presented in Figs. 3 and
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FiG. 3. Temperature distributions in disks of constant
thermal conductivity showing effect of slope of disk
surface.
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FiG. 4. Temperature distributions in disks showing effect
of reducing coolant mass flow.

4. The effect of neglecting the difference between
meridional length measured along the surface
of the disk and the corresponding radial di-
mension is shown in Fig. 3. The valuesn = —1,
A =0125, B = — 00625 specify a disk in
which the thickness at the hub is eight times the
hub radius. For these proportions, temperature
variation through the disk will not be negligible,
so the comparatively small difference between
the curves for B=0 and B = — 00625 is
inconsequential. Thus in any disk which is
sufficiently thin to allow one-dimensional treat-

ment of temperature the effect of slope of the
surfaces may safely be neglected. Fig. 4 shows the
effect of restricting coolant mass flow for a disk
of typical proportions. For values of E below
unity the temperature rise of the coolant is not
more than about } of the difference between disk
rim temperature and coolant inlet temperature,
and the distribution of temperature in the disk
is almost the same as with infinite supply of
coolant. Taking a disk for which r; =9 in,
ro=11in, by =1 in and ks = 12 chu/h ft degC,
and a coolant for which # = 30 chu/h ft? degC
and ¢ = 0-25 chu/lb degC (these being typical
of a gas turbine application), the value E = |
corresponds to a mass flow M = 0-09 Ib/s over
each side of the disk, showing that a com-
paratively small flow provides quite effective
cooling. The influence of variation of thermal
conductivity with temperature is surprisingly
large, although it should be noticed that the
effect is due in part to the mean temperature in
the disk being above the reference temperature
for ks. The values D = 2 and D = 0 correspond
approximately to two typical disk steels (Ni-
monic 90 and F. V. 448 respectively) working
over their useful temperature ranges.

UNSYMMETRICAL COOLING

In some cases it may not be possible to divide
the coolant equally between the two surfaces
of the disk, so that it is necessary to work in
terms of mass flow rates, say M, and M;, over
the right- and left-hand surfaces, which may now
have different heat-transfer coefficients A, and
hi. The heat flow equations become

d7¢r 21rhr
o = M r (T — Tg) 31
chl 27Thl
a = Mc," T —Ta) (32)
ST (1 dk 1 1 db)dT
et 5aﬂ&
hr df hl df

The extension of the numerical integration
procedure for a symmetrically cooled disk to
this case is straightforward. It may be noted that
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the disk and coolant temperature distributions
will not, in general, correspond with the sym-
metrical case, since for this to be so, comparison
of (3) and (4) with (31), (32) and (33) requires

hy h
M, My (33)

It is improbable that both these conditions would
be satisfied simultaneously in practice.
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Résumé—On a calculé la distribution de température a symétrie de révolution pour des disques dont
I’épaisseur varie avec le rayon suivant une loi en puissance et en négligeant la variation de température
dans I’épaisseur. On a trouvé une solution analytique dans le cas de disques de conductibilité thermique
uniforme avec un coefficient de transfert de chaleur constant et une augmentation négligeable de la
température du fluide refroidisseur. On a adopté une solution lorsque la conductivité varie avec le
rayon ou encore lorsque I’augmentation de température du fluide refroidisseur est impossible. On a
présenté quelques résultats de calcul montrant que des débits relativement faibles de fluide refroidis-
seur produisent un refroidissement effectif et que la variation de conductibilité thermique avec la tem-
pérature est sensible pour quelques matériaux d’usage courant.

Zusammenfassung—Die achssymmetrische Temperaturverteilung wird fiir Scheiben mit exponentiell
vom Radius abhingiger Dicke berechnet, unter Vernachlédssigung der Temperaturdnderung durch die
Dicke. Fiir Scheiben gleichmissiger Warmeleitfihigkeit bei konstantem Wiarmeiibergangskoeffizienten
und vernachléssigbarer Temperaturerhdhung des Kiihlmittels liess sich eine analytische Losung finden.
Fiir temperaturabhiingige Warmeleitfahigkeit oder Anderung des Wirmeiibergangskoeffizienten mit
dem Radius oder einer merklichen Erhohung der Kiilhmitteltemperatur wurde eine Losung angenom-
men. Einige Rechenergebnisse werden angegeben ; sie zeigen, dass schon relativ kleine Kiihlmittelstrome
wirksam kiihlen und dass temperaturabhidngige Wirmeleitfihigkeit kennzeichnend fiir einige
gegenwirtig verwendete Materialien ist.

Annoranus—IIpousBeged pacuer 0CeCHMMETPUYECKOr0 pacHpefeldeHUsA TEMOEPATyp s
JUCKOB, TONMMHA KOTOPBHIX M3MEHAETCS DKCIMOHEHIHAJIBHO ¢ PajiMyCoM ; HN3MEHEHUAMM
TEMIEpPATYpPEL M0 TOJIMHe HpeHeGperator. HalileHo aHAIMTHYECKOe pelleHUe JUIIA CJy'Tas
JUCKOB ¢ TOCTOAHHBIMM BHOIb HUX KOAPMUIMEHTAMH TeIJIONPOBO;HOCTU, TOCTOAHHBIM
K0 OUIMeHTOM TelI000MEHA M NPeHeGPeKIMO MaIHM NarpeBanneM OXJTAJUTeNA. Y Kasann
PEeIIeHUA B CJIyYAAX H3MEHeHHA TEIIONPOBOJHOCTH ¢ TeMnepaTypoil, kosddununenta reniao-
o0MeHa ¢ PAfAyCoM WM ’Ke 3HAYNTeJBLHOTO IOBHILEHHA TeMIilepaTyphl oxaaputens. Ilpu-
BOIATCA HEKOTOPHIE PE3YJIBTATHL PACYETOB, KOTOPHIE MOKASLIBAIOT, YTO OTHOCUTENbHO MAIBIe
ITOTOKU OXJIAJUTEIA JAT 3HAYNTESBHOe OXJIAfIeHe H 9TO I3MeHeHMe TeIIOPOBOIHOCTH
II3MEHEHIeM TeMIepATYpHl 3HAUMTENbLHO [JAA HEKOTOPHIX MaTepHaJIoB, MCIOJb3YeMBIX B
HACTOHIIEE BpeMA.



