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(Received 19 August 1963 and in revised form 17 October 1963) 

Abstract-The axisymmetric distribution of temperature is calculated for disks in which the thickness 
varies exponentially with radius, neglecting temperature variation through the thickness. An analytical 
solution is found for the case of disks of uniform thermal conductivity, constant heat-transfer co- 
efficient and negligible coolant temperature rise. When the conductivity varies with temperature, or the 
heat-transfer coefficient varies with radius, or the temperature rise of the coolant is appreciable, a 
numerical solution is adopted. A few computed results are presented, showing that relatively small 
flows of coolant produce eflective cooling, and that variation of thermal conductivity with temperature 

is significant for some materials in current use. 
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NOMENCLATURE 

thickness of disk at radius r; 
meridional length measured outwards along surface of disk; 
heat-transfer coefficient between disk surface and coolant ; 
thermal conductivity of disk material at temperature T; 
arbitrary radius; 
specific heat of coolant; 
mass flow rate of coolant over each side of disk; 
temperature of disk at radius r; 
temperature of coolant at radius r ; 
dimensionless radius; 
dimensionless disk temperature; 
dimensionless coolant temperature; 
a parameter specifying the radial proportions of the disk: 
a parameter specifying the disk thickness; 
a parameter determined by heat-transfer coefficient and con- 
ductivity; 
a parameter determined by temperature coefficient of con- 
ductivity; 
a coolant mass flow parameter; 
vth order modified Bessel functions of first and second 
kinds; 

subscripts 0 and I refer to inner and outer radii of the disk. 
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INTRODUCTION 

A GAS turbine disk, in which the thickness 
usually varies with radius, receives heat from 
the blades at its rim and may be cooled by forced 
convection of air, admitted at the hub, flowing 
outwards over the surfaces of the disk. The heat 
removed from the disk and the temperature 
distribution in it are important in determining 
the blade temperature and thermal stresses in 
the disk. 

There appears to be surprisingly fittle pub- 
lished on temperature distributions in such disks. 
Johnson [l] suggests that the difference between 
temperature at any radius of a thin disk and that 

__---. 

at the hub is proportional to the 4th power of 
radius, but the grounds for this statement are 
not known. Bert [2] has given brief details of a 
non-symmetric solution for a disk of constant 
thermal conductivities in the radial and tan- 
gential directions, over which the heat-transfer 
coefficient is an exponential function of radius. 
In the present work we deal with axisymnletric 
temperature distributions; an analytical solution 
is found for the case of thin disks of uniform 
thermal conductivity, constant heat-transfer 
coefficient, and negligible coolant temperature 
rise. In practical cases where these conditions 
are not met, numerical solutions may be found. 
Runge-Kutta’s method proves useful in this 
instance because of its accuracy, adaptability 
and availability of a suitable subroutine in many 
digital computers. 

ANALYTICAL SOLUTION OF THE HEAT FLOW 

EQUATIONS 

Consider the disk of Fig. 1 in which the thick- 
ness b at any radius r between inner and outer 
radii r, and r, satisfies the relationship 

h z b/’ (1) 

w;here b, and n are constants. Iieat is supplied 
uniformly to the disk at its periphery, where its 
temperature is Tr, and is removed by forced 
convection of a coolant. of specific heat c~,. 
This is introduced at a known temperature Tco at 
the inner radius and flows outwards over both 
surfaces of the disk. The mass flow rate is M 
over each side of the disk. It is assumed that the 
disk is sufficiently thin for temperature variation 
in the direction of the axis to be negligible and 

Axis of 
- 

symmetry 

FIG. I. Diagram showing notation. 

that there is no radial heat flux at the inner 
radius. i.e. 

The heat-transfer coefficient h from the disk to 
the coolant is assumed to be constant through- 
out so the local steady-state temperature of the 
coolant T,. at radius r is related to the local disk 
temperature T by the expression 

in which .f denotes meridional length measured 
outwards along the curved surface of the disk, 
If the thermal conductivity k of the disk, which 
may vary with temperature, is treated for con- 
venience as a function oft’, then the steady-state 
heat conduction equation for the disk is 

We restrict the analytical solution to conditions 
in which M is large, and the thermal conductivity 
is independent of temperature, so that 

?-,. T,.,, (5) 

and 
/i : .X_,$ if3 
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throughout, and, since the disk is comparatively 
thin, 

(7) 

and 

(19 

Equation (4) then becomes 

d2T n $- 1 dT 2h -- -- ----- - : 0 dr2 _+ Y dr ksb, pa (T Tpo) (8) 

when b is written in terms of r from (1). 
It is convenient to work in terms of dimension- 

less temperature (b and dimensionless radius s 
defined by 

and 

4 = CT - Tcoh’(T~ - Ten) (9) 

s = (f - /.,,/(r, - I.“) 

so that (8) becomes 

(10) 

d2+ n -I- 1 d$ 
ds2 t- A +s ds 

~- - C(A + s)-‘b$ = 0 (II) 

in which A and C are constants specified by the 
geometrical and thermal properties of the disk 
and by the heat-transfer coefficient, viz: 

A = /.(J(r, - rO) (12) 

C = 2h @.I - ~~)2-n/kbs. (131 

The solution of (1 I), obtained by Lommel’s 
transformation [3], is 

5, = (A + s)-)‘:~ [c I:(z) i- dK,,(z)] (14) 

where 

II - n/(n - 2) (15) 

and 

= = 2 ” Iz Cli3 (,4 -+ ,)I.-” 2. 

Noting that 

crsb 

(16) 

ds = C’,2 (A + SP [r I,-, (z, - c/K,, -r (z,] (I 7) 

< and n are found from the conditions dI = 1 
and (d#ds), -= 0 to be 

(A -t IF2 AT,,-, (z*) 
r == IJ(Zl) Iv,.. 1 (Z”) -t Ii,. 1 (z*) K,(z,) (18) 

Typical results for the case of PI = 0 (flat plate 
disk) and n = - 1 (hyperbolic disk) are shown 
for a few values of A and C in Fig. 2, from which 
we see that the overall temperature distribution 
is comparatively insensitive to disk shape. The 
difference between the curves at the hub for the 
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FIG. 2. Temperature distributions in disks of constant 
thermal conductivity with constant coolant temperature. 
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disk of tip/hub radius ratio of 9 (A = O-125) 
could be significant in applications where there 
is a limitation on hub temperature; the larger 
value of + at the hub of a hyperbolic disk per- 
sists under conditions of reduced mass flow. 

NUMERICAL SOLUTION OF THE HEAT FLOW 

EQUATIONS 

In many practical cases the supply of coolant 
is restricted to such a degree that it experiences 
a considerable temperature rise as it passes over 
the surface of the disk. Moreover, the tempera- 
ture range from the rim to the hub of the disk 
may be sufficiently wide for there to be appreci- 
able changes in thermal conductivity of the disk 
material. A numerical solution of the coolant 
and disk temperature, equations (3) and (4) is 
adopted in these circumstances; since it is possible 
to allow for the difference between meridional 
length,fmeasured along the curved surface of the 
disk and corresponding radial dimension r, this 
effect is also included. The heat-transfer co- 
efficient h may now be regarded as an arbitrary 
function of radius. The restrictions of (5), (6) 
and (7) no longer apply. 

and 4 and s are defined in (9) and (IO). The 
constants appearing in (21) and (22) are speci- 
fied by the properties of the disk and coolant, and 
by the heat-transfer coefficient, viz: 

A = rO/(rl ro) (24) 

B = 4 bsn (rl ~~ ro)rb-1 (2% 

C = 2h (rl - r,,)2-n/ksbs (1 + pTco) (26) 

D = P (Tl - Tco)/(l + ~Tco) (271 

E = 2~ h (rl - rJ2/Mc,. (28) 

(21) and (22) may be integrated numerically 
from s = 0 to s -= 1 by a step-by-step method 
such as Runge-Kutta’s. The known boundary 
conditions are 

Suppose that the thermal conductivity k of 
the disk material at temperature T is given by 

$-H=O at s=O (29) 
and 

+=l at .s=I (30) 

so the solution is started with an estimated value 
of C#J at s = 0. The integration is made to .s :-= I 
where the computed value of 4 is compared with 
(30). From this comparison a new starting value 
of 4 is estimated and the procedure repeated as 
necessary. 

k = k, (I T /LT) (20) 

in which k,y is the conductivity at a reference 
temperature here taken as zero and TV is the 
temperature coefficient. (3) and (4) may con- 
veniently be written in terms of dimensionless 
temperatures 0 and + and dimensionless radius 
s in the form 

Some results for typical values of the con- 
trolling parameters are presented in Figs. 3 and 

dti 
ds = E(A -+ s) {I + [B(A + s)‘f -‘]2)1#2($ ~ 0) 

(21) 
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FIG. 3. Temperature distributions in disks of constant 
thermal conductivity showing effect of slope of disk 

surface. 
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FIG. 4. Temperature distributions in disks showing effect 
of reducing coolant mass flow. 

4. The effect of neglecting the difference between 
meridional length measured along the surface 
of the disk and the corresponding radial di- 
mension is shown in Fig. 3. The values it = - 1, 
A = O-125, B = - 0.0625 specify a disk in 
which the thickness at the hub is eight times the 
hub radius. For these proportions, temperature 
variation through the disk will not be negligible, 
so the comparatively small difference between 
the curves for B = 0 and B = - O-0625 is 
inconsequential. Thus in any disk which is 
sufficiently thin to allow one-dimensional treat- 

ment of temperature the effect of slope of the 
surfaces may safely be neglected. Fig. 4 shows the 
effect of restricting coolant mass flow for a disk 
of typical proportions. For values of E below 
unity the temperature rise of the coolant is not 
more than about ) of the difference between disk 
rim temperature and coolant inlet temperature, 
and the distribution of temperature in the disk 
is almost the same as with infinite supply of 
coolant. Taking a disk for which r1 = 9 in, 
r,, = 1 in, bs = 1 in and k, = 12 chu/h ft degC, 
and a coolant for which h = 30 chu/h ft2 degC 
and c, = 0.25 chu/lb degC (these being typical 
of a gas turbine application), the value E = I 
corresponds to a mass flow M = 0.09 lb/s over 
each side of the disk, showing that a com- 
paratively small flow provides quite effective 
cooling. The influence of variation of thermal 
conductivity with temperature is surprisingly 
large, although it should be noticed that the 
effect is due in part to the mean temperature in 
the disk being above the reference temperature 
for ks. The values D = 2 and D = 0 correspond 
approximately to two typical disk steels (Ni- 
manic 90 and F. V. 448 respectively) working 
over their useful temperature ranges. 

UNSYMMETRICAL COOLING 

In some cases it may not be possible to divide 
the coolant equally between the two surfaces 
of the disk, so that it is necessary to work in 
terms of mass flow rates, say M,. and Ml, over 
the right- and left-hand surfaces, which may now 
have different heat-transfer coefficients h, and 
hz. The heat flow equations become 

dTcr 2rrh, 
elf = Mrc; r V - Tcr) (31) 

dTcl - = kk! r(T- Tel) 
df MK, (32) 

d2T ldk 1 1 db dT 
-~-+ dr2 i 

i &+;+A d; 
1 

& 

k”L, $7 - 7-W) -; g(T - Tcz) = 0. (33) 

The extension of the numerical integration 
procedure for a symmetrically cooled disk to 
this case is straightforward. It may be noted that 
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the disk and coolant temperature distributions 
wjll not, in general, correspond with the sym- 
metrical case, since for this to be so, comparison 
of (3) and (4) with (31), (32) and (33) requires 

It is improbable that both these conditions would 
be satisfied simultaneously in practice. 
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R&me-On a calcule la distribution de temperature a symttrie de revolution pour des disques dont 
l’epaisseur varie avec le rayon suivant une loi en puissance et en negligeant la variation de temperature 
dans l’epaisseur. On a trouve une solution analytique dans le cas de disques deconductibilite thermique 
uniforme avec un coefficient de transfert de chaleur constant et une augmentation negligeable de la 
temperature du fluide refroidisseur. On a adopt6 une solution lorsque la conductivite varie avec le 
rayon ou encore lorsque I’augmentation de temperature du fluide refroidisseur est impossible. On a 
present& quelques r&hats de calcul montrant que des debits relativement faibles de fluide refroidis- 
seur produisent un refroidissement effectif et que la variation de conductibilite thermique avec la tem- 

perature est sensible pour quelques materiaux d’usage courant. 

Zusammenfassung-Die achssymmetrische Temperaturverteilung wird fur Scheiben mit exponentiell 
vom Radius abhiingiger Dicke berechnet, unter Vernachlassigung der Temperaturanderung durch die 
Dicke. Fur Scheiben gleichmassiger Wkmeleitflhigkeit bei konstantem Wlrmeiibergangskoeffizienten 
und vernachhissigbarer Temperaturerhohung des Kiihlmittels liess sich eine analytische Losung finden. 
Fi,ir temperaturabhlngige Warmeleitfahigkeit oder Anderung des Warmetibergangskoeffizienten mit 
dem Radius oder einer merklichen Erhohung der Kiilhmitteltemperatur wurde eine Losung angenom- 
men. Einige Rechenergebnisse werden angegeben ; sie zeigen, dass schon relativ kleine KiihlmittelstrGme 
wirksam kiihlen und dass temperaturabhingige Warmeleitfahigkeit kennzeichnend fur einige 

gegenwlrtig verwendete Materialien ist. 

,~aaoTaqHsr-npoll3ae~elI pacqer ocecEIMMeTpli~lecrtor0 pacnpe~e~eriun Teillneparyp ;~;rri 
IIBCBOB, TOnmHHa KOTOpbIX M3MeHBCTCH 3BC~OIi3HuCIajlbIi0 C pa#IyCOM ; II:1MCHeHnRYlI 

TeMnepaTypbI II0 TOJImBHe npene6peraroT. HanneHO ana~nrnqecnoe pemeriue An51 cnynarr 

jJnCIEOB C nOCTORHHbIMB BAOJIb HBX IfO3+@InBf?HTaMB TeIIJIOnpOBO;lIIOCTB, I70CTOnIfHbIM 

l;O3,j@InBeHTOM TenJIOO6MeHa II npeHe6peWJMO MBJbiIM iiarpeBaIIueM 0xnawTenB. Yi<aaanbI 
nBIIIeHBH B CJIyWRX B3MeHeHBR TenJIOIIpOBOnHOCTB C TeMIiepaTypOn, uO3@$BInBeliTa TCn;lO- 
o6&reHa C PanByCOM IlJIB We 3Ha’inTCJIbHOI’O nOBbIIIIeIIBR TeMIIepaTypbI OXJIanIITeJIfl. llpll- 
BOARTCR IV3KOTOpbIe pe3yJIbTaTbI paCWTOB, KOTOpbIC nOKa3bIBaIOT, BTO OTHOCBTeJIbIIO NaZIbIt’ 

IIOTOKB ox.na;lnTenn SaroT :niawITe~bIroC oxnalt;zenBe II BTO IuIMeHeIiIIe TCII~~II~~BOAII~CTII C 

u:IMeiIenIie~I TektnepaTypbI :1IIa’iBTeJIbHO HJIff IIeKOTOphIx MaTelnlaJIOiI, IICIlOJIb3yCMIdx II 
iiacTonmee BpeMJI. 


